Synthetic mRNA-based approaches for tissue regeneration – Application potential for the treatment of osteoarthritis

Prof. Dr. rer. nat. Meltem Avci-Adali

University Hospital Tübingen Dept. of Thoracic and Cardiovascular Surgery

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs)

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹ and Shinya Yamanaka^{1,2,*}

¹ Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan ² CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan *Contact: yamanaka@frontier.kyoto-u.ac.jp

DOI 10.1016/j.cell.2006.07.024

Jointly with Sir John B. Gurdon Nobel Prize 2012 in Physiology or Medicine

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs)

Modifiziert aus http://www.lebao.de / http://www.eurostemcell.org/de

Disadvantages of these methods

\rightarrow Use of retroviral vectors

 \rightarrow Genome integration \rightarrow Induction of mutagenesis

Problem:

 \rightarrow cannot be clinically applied

How can mutations be prevented?

Use of non-mutagenic molecules is required: → Synthetic mRNAs

Modified synthetic messenger RNA (mRNA)

Katalin Karikó

Drew Weissman

"for their discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19"

THE NOBEL ASSEMBLY AT KAROLINSKA INSTITUTET

Exogenous delivery of modified synthetic messenger RNA (mRNA)

Avci-Adali M., et al. (2014) J Biol Eng. 8(1):8

Transfection of cells with modified synthetic mRNA

Avci-Adali M., et al. (2014) *J Biol Eng.* 8(1):8

Generation of iPSCs

→ Treatment of human fibroblasts with Yamanaka factors (Oct4, Klf4, cMyc, Lin28, and Sox2) encoding mRNAs for the generation of iPSCs

Disadvantages of synthetic mRNA-based method

- \rightarrow Daily transfection / treatment
- \rightarrow Expensive and time-consuming
- \rightarrow Low efficiency

VEE (Venezuelan equine encephalitis)

Umrath F,..., & Avci-Adali M. Int J Mol Sci. (2019), 20(7):1648

Steinle, H.,... **Avci-Adali, M.** 2019. *Molecular Therapy-Nucleic Acids*, *17*, 907-921.

Steinle, H.,... Avci-Adali, M. 2019. *Molecular Therapy-Nucleic Acids*, *17*, 907-921.

- \rightarrow Only one single transfection is required
- \rightarrow Higher reprogramming efficiency
- \rightarrow No integration into host genome

Differentiation of iPSCs into cardiomyocytes

Generation of beating cardiomyocytes

Molecular Therapy Nucleic Acids Original Article

Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes

Heidrun Steinle,^{1,4} Marbod Weber,^{1,4} Andreas Behring,¹ Ulrike Mau-Holzmann,² Christiane von Ohle,³ Aron-Frederik Popov,¹ Christian Schlensak,¹ Hans Peter Wendel,¹ and Meltem Avci-Adali¹

¹Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany; ³Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany; ³Department of Conservative Dentistry and Periodontology, Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Osianderstraße 2-8, 72076 Tübingen, Germany

Generation of autologous iPSCs for bone regeneration

iPSC generation from jaw periosteum cells (JPCs) for bone tissue engineering

http://smart.servier.com/

Umrath F,..., & Avci-Adali M. Int J Mol Sci. (2019), 20(7):1648

mRNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment

→ Polyplex nanomicelles containing cartilage-anabolic transcription factor RUNX1 mRNA

proliferating nuclear antigen (PCNA)

Aini H, et al. Scientific reports. 2016, 6(1):18743.

→ Delivery of RUNX1 mRNA successfully suppressed the progression of OA in mouse knee joints compared with non-treated group

→ Expression of cartilage-anabolic and proliferation markers was increased in articular chondrocytes of the RUNX1 mRNA injected knees

Cartilage-targeting mRNA-lipid nanoparticles rescue perifocal apoptotic chondrocytes for integrative cartilage repair

Yu X, et al. Chemical Engineering Journal. 2023;465:142841.

- \rightarrow IGF-1 mRNA was encapsulated into ionizable lipid nanoparticles (LNPs)
- → CAQK peptide modification of LNPs led to improved penetration of cartilage and prolonged retention in the joint cavity
- ightarrow IGF-1 mRNA loaded LNPs showed robust reversal of chondrocyte apoptosis
- → In a full-thickness chondral defect model, IGF-1 mRNA loaded LNPs maintained interfacial cellularity and prevented matrix degradation.

Anti-Inflammatory Therapy for Temporomandibular Joint Osteoarthritis Using mRNA Medicine Encoding Interleukin-1 Receptor Antagonist

Deng J, et al. Pharmaceutics. 2022;14(9):1785.

The temporomandibular joint (TMJ) OA causes long-lasting joint pain with chronic inflammation.

→To develop an anti-inflammatory therapy, interleukin-1 receptor antagonist (IL-1Ra) encoding mRNA loaded polyplex nanomicelles were injected into the rat model of the TMJs

A single administration of 2.5 µg of IL-1Ra mRNA provided sustained pain relief and an inhibitory effect on OA progression for 4 weeks.

Highly efficient healing of critical sized articular cartilage defect in situ using a chemically nucleoside-modified mRNA-enhanced cell therapy

TGF-β3 plays a key role in cartilage regeneration and it can induce chondrogenic differentiation of MSCs and promote cartilage-like matrix deposition.

Zhong G, et al. bioRxiv. 2022, 2022-05.

 \rightarrow Single injection of collagen I containing BMSCs without or with 20 µg modified TGF- β 3 mRNA into the critical-sized cartilage defects of rats

Highly efficient healing of critical sized articular cartilage defect in situ using a chemically nucleoside-modified mRNA-enhanced cell therapy

Zhong G, et al. bioRxiv. 2022, 2022-05.

Sham group: without cartilage defect Control group: cartilage defect creation and injection of PBS CB group: injection of Collagen I and BMSCs mixture CmR group: injection of Collagen I and TGFβ3 mRNA CBmR group: injection of Collagen I, BMSCs ,and TGFβ3 mRNA

- → Group injected with collagen I, BMSCs ,and TGFβ3 mRNA showed a smooth joint surface and improved cartilage regeneration after 4 and 6 weeks
- → Compared to the group without TGF-β3 mRNA reduced subchondral bone abnormalities increased cartilage thickness, filling of the defect, and an increase in type II collagen were detected.
- \rightarrow µCT analyses showed that TGF- β 3 mRNA not only promoted cartilage regeneration but also inhibited the pathological changes of subchondral bone

Conclusion

Synthetic mRNA technology offers several potential application possibilities for the treatment of osteoarthritis:

- ightarrow Disease-Modifying Osteoarthritis Drugs
 - Synthetic mRNAs encoding proteins that promote the synthesis of ECM components or inhibit cartilage-degrading enzymes to prevent the progression of OA

\rightarrow Pain Management

- Synthetic mRNAs encoding proteins for pain relief

\rightarrow Growth Factors

- Stimulate the production of new cartilage tissue and enhance the healing process

\rightarrow Prevention of inflammation

- Synthetic mRNAs encoding anti-inflammatory proteins to reduce inflammation and slow down the progression of the disease

Thank you for your attention!

Combination of synthetic mRNA with implants

MDP

International Journal of Molecular Sciences

inin ber

Article Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs—The Potential Role in Increasing Anabolic Response

Gauri Tendulkar ¹,*, Sabrina Ehnert ¹, Vrinda Sreekumar ¹, Tao Chen ¹, Hans-Peter Kaps ¹, Sonia Golombek ², Hans-Peter Wendel ², Andreas K. Nüssler ¹⁽⁰⁾ and Meltem Avci-Adali ²

BG Klinik Tübingen

Siegfried Weller Institute for Trauma Research

Footprint-free generation of autologous hepatocytes

Possible application in liver tissue engineering and drug testing

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Innovative aspects of the strategy

\checkmark Self-replicating mRNA is degradable and not genome-integrating

- \rightarrow No induction of mutagenesis
- \rightarrow Generation of clinically applicable cells

✓ Non-invasive collection of patient cells from urine

 \rightarrow Destruction of healthy tissue not necessary

✓ Generation of desired cells from patient's own somatic cells

- \rightarrow autologous cells
- \rightarrow no rejection reactions
- \rightarrow personalized treatment

✓ Regeneration of tissues

Acute myocardial infarction - loss of cardiomyocytes

Heart attack #1 cause of death

http://www.mdguidelines.com/myocardial-infarction-acute

- Death of cardiomyocytes
- Very low proliferation ability of adult cardiomyocytes
- Scar tissue replacement

Impaired heart function

Therapy approaches for the regeneration of the heart muscle

Modifiziert nach Ptaszek L.M., et al., Lancet (2012) 379 (9819): 933-42

Modified synthetic messenger RNA (mRNA)

Beck JD, et al. mRNA therapeutics in cancer immunotherapy. Molecular cancer. 2021, 20(1):1-24.

Implantable cells

Cells	Advantages	Disadvantages
Skeletal myoblasts	Easy to isolate High proliferation rate Hypoxia-resistant Autologous	Incidence of cardiac arrhythmias
Stem cells from bone marrow	Easy to isolate Multipotent Low immune responses Autologous	Limited availability Bone and cartilage generation in myocardium
Stem cells from adipose tissue	Easy to isolate High Availability Multipotent Low immune responses	Low survival
Kardiale Stammzellen	Multipotent Autolog	Limited availability

Transfection of cells with modified synthetic mRNA

Generation of lipoplexes for mRNA transfection

mRNA transfected cell eGFP positive cell

Application of cardiomyocytes generated from iPSCs into the myocardium

How can we deliver these cardiomyocytes into the myocardium?

http://www.nature.com/nm/journal/v19/n4/images/nm.3147-F1.jpg

Application of cardiomyocytes generated from iPSCs into the myocardium

<image>

XenoLight DiR fluorescent dye

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium

Marbod Weber¹, Andreas Fech², Luise Jäger², Heidrun Steinle¹, Louisa Bühler², Regine Mariette Perl³, Petros Martirosian³, Roman Mehling⁴, Dominik Sonanini⁴, Wilhelm K. Aicher⁵, Konstantin Nikolaou³, Christian Schlensak¹, Markus D. Enderle², Hans Peter Wendel¹, Walter Linzenbold³ & Meltem Avci-Adali^{12–3}

mRNA releasing hydrogels

International Journal of Molecular Sciences

MDPI

Article

Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and Sustained Expression of Exogenous Proteins in Cells

Heidrun Steinle, Tudor-Mihai Ionescu, Selina Schenk, Sonia Golombek, Silju-John Kunnakattu, Melek Tutku Özbek, Christian Schlensak, Hans Peter Wendel and Meltem Avci-Adali *

Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany; heidi.steinle@googlemail.com (H.S.); tudor_mihai.ionescu@yahoo.de (T.-M.I.); schenkse@hs-albsig.de (S.S.); sonia.golombek@klinikum.uni-tuebingen.de (S.G.); silju_j1984@yahoo.de (S.-J.K.); mtutkuozbek@gmail.com (M.T.O.); Christian.Schlensak@med.uni-tuebingen.de (C.S.); hans-peter.wendel@med.uni-tuebingen.de (H.P.W.)

* Correspondence: meltem.avci-adali@uni-tuebingen.de

Steinle H., ..., Avci-Adali M. Int. J. Mol. Sci. 2018, 19(5)

Modification of endothelial progenitor cells (EPCs) using synthetic mRNA

Anwendung von synthetischer mRNA zur Modifikation von Zellen

Molecular Therapy Nucleic Acids Volume 13, 7 December 2018, Pages 387-398 open access

Original Article

Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs

Heidrun Steinle ¹, Sonia Golombek ¹, Andreas Behring ¹, Christian Schlensak ¹, Hans Peter Wendel ¹, Meltem Avci-Adali ¹ & 🖴

Tube formation assay

Modification of endothelial progenitor cells (EPCs) using synthetic mRNA

Original Article

Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs

Heidrun Steinle¹, Sonia Golombek¹, Andreas Behring¹, Christian Schlensak¹, Hans Peter Wendel¹, Meltem Avci-Adali¹ ^A, 🖾

Modification of endothelial progenitor cells (EPCs) using synthetic mRNA

→ ANG-1 mRNA transfected EPCs showed significantly enhanced angiogenic potential

Footprint-free generation of autologous rejuvenated skeletal myocytes for sphincter muscle repair

Dept. of Urology

Fused myotubes

Actin

Actin+MyoG

DAPI+Actin+MyoG

